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The paper reports a full model identi"cation study carried out on a scale model of a dam
buttress subjected to seismic-like excitations generated by means of a shake table. The use of
linear and non-linear models is discussed, since the buttress has an arti"cial crack and is
subjected to high-intensity inputs. In particular, a suitable class of polynomial NARX
models is considered, which captures most of the system dynamics.

Several questions related to the NARX identi"cation methodology are addressed in the
paper; use of non-linear models greatly increases model accuracy and reliability, but many
speci"c operational problems arise in practice. In particular, the validity of classical model
selection approaches is questionable; satisfactory non-linear models are obtained in this case
with many fewer parameters than suggested by conventional performance indices. Also, it is
di$cult to guarantee a satisfactory model performance in simulation and, sometimes, even
stability is hard to obtain.

With reference to speci"c identi"ed models a further analysis step is carried out, which
shows the evolution of the dynamic characteristics of the model in the various phases of the
earthquake-like excitation. Also, the role of the particular non-linearities included in the
model is discussed.
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1. INTRODUCTION

A challenging problem in the monitoring of civil structures is the assessment of damage and
cracks caused by seismic events. This requires a consistent modelling technique to be
available to describe the dynamics of a structure both in low- and high-input excitation
situations, so that the evolution of the structure can be checked to see if any characteristics
change during major vibrations. Both temporary and permanent system modi"cations may
be experienced; medium intensity signals a!ect the behaviour of the system only
temporarily by exciting its non-linear dynamics for a limited period of time, whereas
high-intensity signals produce permanent structure modi"cations in terms of sti!ness decay.
Therefore, some type of non-linear modelling must be implemented to account for
structural damage (permanent non-linear dynamic modi"cations) or simply for the e!ects of
0022-460X/01/030405#18 $35.00/0 ( 2001 Academic Press
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high-level vibrational input signals. Also a periodic re-identi"cation of the model is necessary
to rearrange the model structure and correct its parameters.

A promising line of research in this area is represented by the use of black-box non-linear
models of the NARX/NARMAX family [1, 2], which extend the well-known linear
ARX/ARMAX class [3, 4]. While many examples of applications of linear techniques to
model identi"cation and dynamic analysis applied to civil structures are given in the recent
literature (see, e.g. references [5}8]), only few researchers have extended their interest to
non-linear modelling techniques (see, e.g., references [9, 10]).

This is motivated mostly by the di$culties in applying non-linear identi"cation
methodologies, and by the lack of methods for the analysis of the non-linear models identi"ed.
In fact, model selection remains a largely unsolved problem; that is, it is not clear how to select
a non-linear class of parametric models to "t a speci"c set of data. For polynomial
NARX/NARMAX models, several criteria have been proposed in the literature for the
selection of suitable regression terms (see, e.g., references [11}14]), but this remains as the
more critical part of the non-linear identi"cation algorithms, with much room for further
research. Empirical indices, such as the "nal prediction error (FPE), the Akaike information
criterion (AIC) and the minimum description length (MDL) [4, 12], have also been applied to
the problem of non-linear model selection, but they rarely yield conclusive proof in favour of
a speci"c model structure. Also, since most of the identi"cation algorithms follow a prediction
error approach (the one-step ahead prediction error is minimized), there is no guarantee that
the identi"ed models will yield an acceptable performance in simulation; that is, when the
predicted outputs are fed back in the model instead of the actual system outputs. It is not
unusual for an identi"ed non-linear model with a very small prediction error to become
unstable in simulation. In conclusion, many e!ective identi"cation algorithms are available at
present for non-linear identi"cation, but much skill is nevertheless required on the part of the
user to achieve consistent modelling.

As for the lack of methods for the analysis of the identi"ed non-linear models, this is
only partly true for polynomial NARX models, where the parameters can sometimes
considered in direct relationship with those of &&physical''models. Also, there has been a major
breakthrough in recent years concerning the frequency analysis of these types
of non-linear models following the works of Billings and Tsang [15, 16]. This has
renewed interest on NARX/NARMAX modelling for mechanical and civil applications
[9, 10]. In reference [10] the authors have shown some of the results that may be derived by
means of such non-linear frequency analysis tools with reference to the same case that is
studied here.

In the present work a thorough modelling study is described, which makes use of
experimental data gathered at Enel. Hydro (formerly ISMES) laboratories [17, 18].
A laboratory-scale dam buttress has been subjected to earthquake-like inputs on a shake
table and the resulting vibrations have been recorded and analyzed. In order to emphasize the
need for non-linear models, di!erent amplitude signals have been employed, varying from low
to high intensity, and an arti"cial crack has been arti"cially opened in the buttress.

The identi"cation study has been conducted both with linear and non-linear models, which
have been compared in terms of classical empirical performance indices; the analysis shows
that these indices yield con#icting results and may in fact be impractical for non-linear
identi"cation purposes. Alternatively, more compact NARX models have been derived which
have an acceptable performance and lend themselves to a more speci"c analysis which can
deliver a much deeper understanding of the system dynamic characteristics. In the paper,
attention is focused on a subclass of the polynomial NARX models, both for convenience (the
model selection phase is simpli"ed) and physical purposes (a direct interpretation of the model
parameters is partly possible in terms of physical vibrational models).
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2. THE NON-LINEAR MODEL CLASS

The class of polynomial NARX/NARMAX models [1, 2] has many useful and appealing
features for non-linear black-box identi"cation:

f they are a discrete-time straightforward counterpart of non-linear di!erential equations,
so that physical parameters can be directly estimated from them;

f they can model purely linear systems as well as a large class of non-linearities;
f they are linear-in-the-parameters models, so that they can be identi"ed with simple

algorithms of the least-squares family and with relatively little e!ort;
f a computer implementation of these models and of the related identi"cation algorithms is

straightforward.

In the following, a suitable sub-class of polynomial NARX models is de"ned, with reference
to simple 1-degree-of-freedom (1-DOF) systems, described by the following di!erential
model, with quadratic and cubic non-linearities in the elastic force and damping terms:
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The corresponding NARX structure is derived from the last expression by a standard
approximate Euler discretization:
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The parameter notation, borrowed from reference [19], must be interpreted as follows; the
"rst subscript index denotes the number of y ()) factors in the corresponding regression term,
whereas the second index refers to the number of u ()) factors; the numbers in parentheses are
the time delays of the various factors in the regression term [y ()) factors "rst].

Extending this approach, the following &&extended''model structure, which can capture up
to four vibrational modes in the linear part, is obtained:
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Model (1), though heavily restricted in the type of non-linearity, is nevertheless capable of
describing e$ciently most of the dynamic properties of the structure analyzed in the
following. As already pointed out, restricting the number of regressors in the identi"cation
process is a key feature to successful modelling, in that it simpli"es the model selection
phase. However, the methods shown below can be easily extended to more general classes of
NARX models.

The identi"cation of linearly parameterized polynomial models of type (1) can be easily
performed with standard least squares. However, orthogonalization procedures are usually
employed in the selection of the appropriate regression terms in order to prevent numerical
problems in the identi"cation procedure [11].



Figure 1. The dam buttress scale model.
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3. THE DAM BUTTRESS DATA

All the results produced in the paper pertain to experimental data gathered at ISMES
laboratories [17, 18] as follows: a scale model of a dam buttress (Figure 1) has been
subjected to seismic-like signals at di!erent excitation levels on a shake table and the
resulting vibrations have been measured in di!erent places of the buttress.

The buttress has been constructed with homogeneous and isotropic materials which have
a linear elastic behaviour in the applied excitation range. An arti"cial closed crack has been
produced in the buttress, so that non-linear behaviour is to be expected, especially with
high-amplitude input signals. In loose terms, structural movements that tend to open the
crack are wider than movements in the opposite direction, resulting in asymmetrical
oscillations, i.e., in a non-linear type of motion.

The experimental set-up has been developed in order to study one of the typical
non-linearities that may be experienced in real-dam buttresses. However, it must be kept in
mind that the actual modal parameters of this scale model have no relationship with those
usually measured in structures of this type.

The shake table is capable of generating six simultaneous and independent motions (three
translational and three rotational with respect to three orthogonal axes). It is driven by four
horizontal and four vertical electro-hydraulic actuators, which can exert a force of 500 and
600 kN respectively. Altogether, 75 measurement points have been placed on the buttress in
the three orthogonal directions (marked ¸, ¹ and < in Figure 1) in various positions.
Acceleration measurements are taken by means of piezoeletric accelerometers.

Performing model identi"cation at di!erent excitation levels has pointed out the
dependency of structural parameters of the system on the input amplitude, thus revealing its
non-linear nature. Three experimental recordings, which correspond to low, medium and
high input amplitude, respectively, are considered in the sequel [18]. The time-domain
diagrams of the recorded data are reported in Figures 2}4. Both input and output signals
are acceleration measurements (m/s2) in the longitudinal direction (marked ¸ in Figure 1);
the inputs are measured at the base of the buttress, while the outputs are taken at the top.
Data are sampled every 2]10~3 s for a total period of 10 s (5000 data points).



Figure 2. (a) Input signal (low-force data set). (b) Output signal (low-force data set).

Figure 3. (a) Input signal (medium-force data set). (b) Output signal (medium-force data set).

Figure 4. (a) Input signal (high-force data set). (b) Output signal (high-force data set).
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The spectral diagrams are shown in Figures 5 and 6. These have been computed on the
raw data with standard FFT-based routines, with a Hamming window of lag size 30. No
further "ltering has been applied to the signals, so as not to attenuate signi"cant
high-frequency dynamics if any. The spectra display a resonance peak between 40 and



Figure 5. Spectral diagram: input signals.

Figure 6. Spectral diagram: output signals.
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50 Hz and other lower but signi"cant peaks, clearly distinguishable from high-frequency
ripples. These additional peaks are most probably not the e!ect of high-frequency noise in
the measurements but of an inherent non-linearity of the system; in particular, the peaks at
the double and triple of the resonance frequency (harmonics) call for a quadratic and/or
cubic NARX model. This is particularly true for the data corresponding to
a high-amplitude input signal. This intuition is con"rmed by the time diagrams (examine
the time interval between 2 and 6 s), where an asymmetry is apparent.

Note also that while the input spectrum drops abruptly after 70 Hz, the output displays
a much larger band; this phenomenon is probably due to a combination of factors, such as
the presence of high-frequency noise in the measurements, and a non-linear behaviour of the
system (a noise-free linear system cannot generate harmonic components at frequencies not
contained in the input spectrum).



Figure 7. Coherence functions.
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4. LINEAR OR NON-LINEAR MODELLING?

A typical means for establishing the need of a non-linear model is the coherence function,
which indicates the frequency bands where the input}output relationship can be safely
interpreted as being linear. Figure 7 shows the coherence functions of the three data sets. In
all cases, a linear model is shown to be su$cient in order to capture the low-band
behaviour. However, the coherence function is very low in the proximity of the resonance
peak. Also, as has already been pointed out, there are still some relevant dynamics to be
modelled in the medium frequency band (50}150 Hz). From the coherence diagrams it
appears that these features require non-linear modelling.

A di!erent type of analysis has been performed next. A linear ARX(8, 8) model has been
estimated for every data set and the frequency response diagram associated with the transfer
function of the model has been analyzed. The linear model is chosen to be redundant on
purpose so that it has a su$cient number of degrees of freedom to capture also the
dynamics that relate to the non-linear behaviour of the system. All three diagrams (Figure 8)
show a resonance peak at about 48 Hz with an amplitude of 35}40 dB. Two other peaks of
Figure 8. Redundant linear model frequency response diagram.
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lower amplitude occur at &144 Hz (48]3 Hz) and &192 Hz (48]4 Hz) respectively. Since
these peaks are located at a frequency which is almost equal to three and four times the
fundamental frequency, respectively, it can be argued that an appropriate model should
contain non-linearities of the cubic quadratic type. In particular, the secondary peaks of the
ARX model estimated on the high force data set have an amplitude almost equivalent to
that of the peak at the fundamental frequency.

5. MODEL IDENTIFICATION

Extensive model identi"cation sessions have been performed in order to select suitable
model structures and parameterizations for all the data sequences. Both linear ARX and
non-linear NARX models have been analyzed. The following families of models have been
considered:

f linear models: ARX(n
a
, n

b
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f non-linear models: NARX(n
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b
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Only these simple non-linearities have been included in the model structure, motivated by
the conclusions drawn at the end of the previous paragraph.

The most critical aspect in the identi"cation methodology is represented by the selection
of the appropriate model structure; the model should simulate the underlying system with
su$cient accuracy, at the same time "ltering the spurious or noisy information contained in
the input/output data. In other words, the model should be both precise (minimal prediction
and simulation error) and robust (accuracy also on data not employed in the estimation
phase). Note that the precision, that is, the ability of a model to "t the data, increases with its
complexity (i.e., the number of parameters), whereas beyond a certain limit robustness
decreases, since the model over"ts the data employed in estimation and is less generalizable
to other data.

There exist several di!erent tools for the evaluation of the quality of an estimated model
[3, 4]:

(1) computation of objective indices as the prediction or simulation error variance;
(2) computation of empirical indices (FPE, AIC, MDL), that compromise between

accuracy and complexity of the estimated model;
(3) correlation analysis (auto-correlation of the prediction error and cross-correlation

between prediction error and input);
(4) cross-validation (evaluation of the quality of the model on data di!erent from those

employed in estimation).

The analysis performed in the paper has shown that tools of the "rst three types may yield
results which are not conclusive or which are di$cult to interpret for the selection of the
model structure.

The identi"ed models have been compared in terms of both objective indices, such as the
prediction error variance and the simulation error variance, and empirical indices, such as
the FPE, the AIC and the MDL [4, 12]. These indices, which have been conceived with



MODELLING OF A DAMAGED BUTTRESS 413
reference to stationary stochastic processes, are employed in the following to evaluate their
usefulness in a wider context. They are de"ned as follows:
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) is the prediction error variance of the estimated model (which depends on the

estimated model parameterization 0K
n
), n is the total number of parameters and N is the

number of data employed in the estimation. The best model according to each of these
indices is such that incrementing further the number of parameters does not diminish
signi"cantly the index. Usually, the three methods give correlated answers: for high N the
FPE and the AIC select almost equal models, while the MDL generally selects a model with
fewer parameters than the other two methods.

In Tables 1}3, model performances are compared in terms of these "ve indices for each of
the three data sets. Shading indicates the minimum value obtained for the error variances
and the best model structure selected according to the empirical indices.

Finally, all identi"ed models have been subjected to classical correlation tests to certify
that they have the appropriate structure with respect to the true system. These tests are
based on the observation that the residual should ideally be a zero mean white noise and be
independent of all inputs: the validity of these hypotheses is statistically checked by the
examination of the residual autocorrelation function and the input-residual
cross-correlation function respectively. If these functions are not signi"cantly di!erent from
zero, i.e., they are inside suitable con"dence bands, the residual is assumed to be of the
desired type.

5.1. MODEL IDENTIFICATION OF THE LOW-FORCE DATA SET

As can be seen from Table 1, 16 autoregressive terms are needed in this case. More linear
terms result in a slight increase of FPE, whereas AIC and MDL display an insigni"cant
improvement. The use of one of more non-linear terms does not alter this performance.
However, it must be noted that, comparing models with the same number of autoregressive
parameters, the NARX(n

a
, n

b
, 1) models display a better simulation error. If the latter is

taken as the reference index, one should select models with 16 autoregressive parameters.
For models with n

a
*14 the linear part of the model is redundant; by inspection of the

transfer function many couples of poles and zeros may be seen to be almost in the same
positions (quasi-cancellations). The prediction error autocorrelation and the
cross-correlation between the input and the prediction error are minimal for models with
n
a
*16.

5.2. MODEL IDENTIFICATION OF THE MEDIUM-FORCE DATA SET

Again, the FPE, AIC and MDL indices suggest that 16 autoregressive terms should be
included in the model, whereas the use of additional non-linear terms is ine!ective (see



TABLE 1

Comparison of the models estimated on the low-force data set

Pred. err. Sim. err.
variance variance FPE AIC MDL

ARX(4, 4) 0)005667 0)2013 0)0057 !5)1698 !5)1594
ARX(6, 4) 0)005024 0)1869 0)0050 !5)2895 !5)2765
ARX(8, 4) 0)004085 0)2049 0)0041 !5)4956 !5)4800
ARX(10, 4) 0)003644 0)1700 0)0037 !5)6089 !5)5907
ARX(12, 4) 0)003382 0)1663 0)0034 !5)6830 !5)6622
ARX(14, 4) 0)003223 0)1845 0)0032 !5)7304 !5)7069
ARX(16, 4) 0)002788 0)1621 0)0028 !5)8744 !5)8483
ARX(18, 4) 0)002728 0)1729 0)0028 !5)8952 !5)8666
ARX(20, 4) 0)002666 0)1625 0)0027 !5)9175 !5)8863
ARX(22, 4) 0)002648 0)1631 0)0027 !5)9236 !5)8897
ARX(24, 4) 0)002642 0)1645 0)0027 !5)9249 !5)8884
NARX(4, 4, 1) 0)005660 0)1998 0)0057 !5)1707 !5)1590
NARX(6, 4, 1) 0)005020 0)1830 0)0050 !5)2899 !5)2756
NARX(8, 4, 1) 0)004070 0)1884 0)0041 !5)4989 !5)4819
NARX(10, 4, 1) 0)003641 0)1594 0)0037 !5)6096 !5)5901
NARX(12, 4, 1) 0)003377 0)1552 0)0034 !5)6838 !5)6617
NARX(14, 4, 1) 0)003216 0)1730 0)0032 !5)7320 !5)7073
NARX(16, 4, 1) 0)002783 0)1513 0)0028 !5)8759 !5)8485
NARX(18, 4, 1) 0)002723 0)1625 0)0027 !5)8967 !5)8667
NARX(20, 4, 1) 0)002662 0)1544 0)0027 !5)9187 !5)8861
NARX(22, 4, 1) 0)002642 0)1522 0)0027 !5)9254 !5)8902
NARX(24, 4, 1) 0)002636 0)1531 0)0027 !5)9268 !5)8890
NARX(4, 4, 2) 0)005652 0)1995 0)0057 !5)1718 !5)1587
NARX(6, 4, 2) 0)005017 0)1830 0)0050 !5)2902 !5)2746
NARX(8, 4, 2) 0)004062 0)1883 0)0041 !5)5005 !5)4823
NARX(10, 4, 2) 0)003637 0)1592 0)0037 !5)6103 !5)5894
NARX(12, 4, 2) 0)003372 0)1548 0)0034 !5)6850 !5)6615
NARX(14, 4, 2) 0)003214 0)1726 0)0032 !5)7323 !5)7063
NARX(16, 4, 2) 0)002782 0)1512 0)0028 !5)8757 !5)8471
NARX(18, 4, 2) 0)002722 0)1625 0)0027 !5)8968 !5)8656
NARX(20, 4, 2) 0)002661 0)1544 0)0027 !5)9186 !5)8847
NARX(22, 4, 2) 0)002642 0)1521 0)0027 !5)9252 !5)8887
NARX(24, 4, 2) 0)002636 0)1530 0)0027 !5)9266 !5)8875
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Table 2). The simulation error variance con"rms that purely linear models are enough in
this case. Also, it indicates that an appropriate number of autoregressive parameters should
be 10, 12 or 16. It must be noted, however, that none of the identi"ed models respects the
95% con"dence bands of the residual autocorrelation and the input-residual
cross-correlation. More than 16 linear autoregressive terms are clearly redundant.

5.3. MODEL IDENTIFICATION OF THE HIGH-FORCE DATA SET

The FPE, AIC and MDL indices unanimously show that the high-force data set is best
estimated with 14 autoregressive terms and, as expected, the non-linear terms signi"cantly
increase the estimation performance (see Table 3). Interestingly enough, the best
performance in terms of the simulation error is obtained in correspondence with very



TABLE 2

Comparison of the models estimated on the medium-force data set

Pred. err. Sim. err.
variance variance FPE AIC MDL

ARX(4, 4) 0)015467 0)5103 0)0155 !4)1659 !4)1555
ARX(6, 4) 0)015174 0)4926 0)0152 !4)1842 !4)1711
ARX(8, 4) 0)012279 0)5456 0)0123 !4)3951 !4)3795
ARX(10, 4) 0)011232 0)4582 0)0113 !4)4834 !4)4651
ARX(12, 4) 0)011035 0)4476 0)0111 !4)5003 !4)4794
ARX(14, 4) 0)010242 0)4878 0)0103 !4)5741 !4)5506
ARX(16, 4) 0)009696 0)4758 0)0098 !4)6280 !4)6020
ARX(18, 4) 0)009643 0)4857 0)0097 !4)6327 !4)6040
ARX(20, 4) 0)009623 0)4883 0)0097 !4)6340 !4)6027
ARX(22, 4) 0)009538 0)4694 0)0096 !4)6420 !4)6081
ARX(24, 4) 0)009485 0)4858 0)0096 !4)6469 !4)6104
NARX(4, 4, 1) 0)015275 0)6684 0)0153 !4)1779 !4)1662
NARX(6, 4, 1) 0)014954 0)6956 0)0150 !4)1984 !4)1840
NARX(8, 4, 1) 0)012237 0)6155 0)0123 !4)3981 !4)3812
NARX(10, 4, 1) 0)011149 0)6403 0)0112 !4)4904 !4)4709
NARX(12, 4, 1) 0)010970 0)6003 0)0110 !4)5058 !4)4836
NARX(14, 4, 1) 0)010218 0)5549 0)0103 !4)5760 !4)5512
NARX(16, 4, 1) 0)009659 0)5911 0)0097 !4)6315 !4)6041
NARX(18, 4, 1) 0)009611 0)5901 0)0097 !4)6357 !4)6057
NARX(20, 4, 1) 0)009591 0)5930 0)0097 !4)6369 !4)6044
NARX(22, 4, 1) 0)009516 0)5522 0)0096 !4)6440 !4)6088
NARX(24, 4, 1) 0)009469 0)5495 0)0096 !4)6481 !4)6103
NARX(4, 4, 2) 0)015275 0)6684 0)0153 !4)1775 !4)1645
NARX(6, 4, 2) 0)014954 0)6956 0)0150 !4)1980 !4)1824
NARX(8, 4, 2) 0)012237 0)6155 0)0123 !4)3977 !4)3795
NARX(10, 4, 2) 0)011148 0)6402 0)0112 !4)4901 !4)4692
NARX(12, 4, 2) 0)010970 0)6003 0)0110 !4)5054 !4)4819
NARX(14, 4, 2) 0)010218 0)5550 0)0103 !4)5756 !4)5496
NARX(16, 4, 2) 0)009657 0)5914 0)0097 !4)6313 !4)6026
NARX(18, 4, 2) 0)009609 0)5904 0)0097 !4)6354 !4)6041
NARX(20, 4, 2) 0)009590 0)5933 0)0097 !4)6367 !4)6028
NARX(22, 4, 2) 0)009514 0)5523 0)0096 !4)6438 !4)6073
NARX(24, 4, 2) 0)009466 0)5497 0)0096 !4)6480 !4)6089
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parsimonious models: NARX(4, 4, 1), NARX(4, 4, 2), NARX(6, 4, 1), NARX(6, 4, 2). All
identi"ed models should be rejected on the basis of the correlation tests. For the models
with n

a
*20, the linear part is redundant.

5.4. SOME COMMENTS AND FURTHER DEVELOPMENTS

The identi"cation compaign has shown several interesting facts:

(1) The low- and medium-force data sets are e!ectively estimated by linear models whereas
the high-amplitude input case requires some non-linear modelling, indicating that the
input intensity is enough to excite the non-linear dynamics of the system.

(2) If the simulation error is considered, better results are obtained in both the low- and
high-force cases if NARX(n

a
, n

b
, 1), models are employed. Additional non-linear terms

are ine!ective.



TABLE 3

Comparison of the models estimated on the high-force data set

Pred. err. Sim. err.
variance variance FPE AIC MDL

ARX(4, 4) 0)278522 4)6207 0)2794 !1)2751 !1)2646
ARX(6, 4) 0)236060 4)4829 0)2370 !1)4397 !1)4266
ARX(8, 4) 0)190917 4)7018 0)1918 !1)6511 !1)6355
ARX(10, 4) 0)184794 4)5701 0)1858 !1)6829 !1)6647
ARX(12, 4) 0)180552 4)5721 0)1817 !1)7053 !1)6845
ARX(14, 4) 0)175394 4)5932 0)1767 !1)7335 !1)7101
ARX(16, 4) 0)174656 4)5961 0)1761 !1)7369 !1)7109
ARX(18, 4) 0)174012 4)6489 0)1756 !1)7398 !1)7112
ARX(20, 4) 0)171164 4)7730 0)1728 !1)7555 !1)7243
ARX(22, 4) 0)170478 4)8018 0)1723 !1)7587 !1)7249
ARX(24, 4) 0)169331 4)7818 0)1712 !1)7647 !1)7282
NARX(4, 4, 1) 0)276450 3)7756 0)2774 !1)2821 !1)2704
NARX(6, 4, 1) 0)234322 3)8792 0)2354 !1)4467 !1)4323
NARX(8, 4, 1) 0)189218 4)2417 0)1902 !1)6597 !1)6427
NARX(10, 4, 1) 0)182947 4)0606 0)1840 !1)6926 !1)6730
NARX(12, 4, 1) 0)178784 4)0514 0)1800 !1)7148 !1)6926
NARX(14, 4, 1) 0)173921 4)0266 0)1752 !1)7416 !1)7168
NARX(16, 4, 1) 0)173063 4)0170 0)1745 !1)7457 !1)7183
NARX(18, 4, 1) 0)172312 4)0355 0)1739 !1)7493 !1)7193
NARX(20, 4, 1) 0)169633 4)0993 0)1713 !1)7641 !1)7315
NARX(22, 4, 1) 0)169016 4)1269 0)1709 !1)7670 !1)7318
NARX(24, 4, 1) 0)167785 4)1023 0)1697 !1)7735 !1)7357
NARX(4, 4, 2) 0)275148 3)7786 0)2763 !1)2864 !1)2734
NARX(6, 4, 2) 0)233804 3)8820 0)2349 !1)4485 !1)4328
NARX(8, 4, 2) 0)188739 4)2399 0)1898 !1)6618 !1)6435
NARX(10, 4, 2) 0)182430 4)0580 0)1836 !1)6950 !1)6741
NARX(12, 4, 2) 0)178068 4)0495 0)1794 !1)7184 !1)6949
NARX(14, 4, 2) 0)173286 4)0250 0)1747 !1)7448 !1)7187
NARX(16, 4, 2) 0)172455 4)0153 0)1740 !1)7488 !1)7201
NARX(18, 4, 2) 0)171621 4)0342 0)1733 !1)7529 !1)7216
NARX(20, 4, 2) 0)168845 4)1001 0)1706 !1)7684 !1)7345
NARX(22, 4, 2) 0)168294 4)1256 0)1702 !1)7708 !1)7343
NARX(24, 4, 2) 0)167060 4)0973 0)1691 !1)7774 !1)7383
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(3) Apparently, all the empirical criteria (FPE, AIC and MDL) give identical results. This is
to be expected for FPE and AIC, but is not usually experimented with MDL, which
tends to select more parsimonious models than the "rst two indices. In the speci"c case,
this must be ascribed to the extremely large number of data with respect to the number
of parameters considered: if NAn, the prediction error variance is weighted much more
than the model complexity, so that there is little di!erence in selecting the model
structure on the basis of the prediction error variance or of one of the empirical criteria.
On the other hand, substantially di!erent model structures are suggested by the
simulation error variance, which evaluates the model on a totally di!erent basis. This
questions whether simulation- or prediction-based indices should be considered to be
more reliable. This could largely depend on issues related to the "nal purpose of the
models; if the model are estimated for interpretation purposes, prediction accuracy
could be insu$cient.
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(4) In most cases many autoregressive terms are necessary, but the high-force data set
shows that fewer (but appropriate) non-linear terms could be equivalent; an increase in
the linear terms of the model cannot compensate for an inherent non-linearity of the
system.

This last point can be better understood if the signi"cance of the parameter estimates is
evaluated with the standard analysis methods for least-squares estimates [4]. The
convariance matrix of the estimated parameter vector can be computed using the formula

cov(0K )"jK 2C
N
+
1

u (k)u(k)@D
~1

,

where 0K is the estimated parameter vector, u (k) is the regressor vector and jK 2 is the
estimated variance of the prediction residual. The estimated parameters are considered
signi"cantly di!erent from 0 if their absolute value is much greater than three times, pL ,
where the latter denotes the standard deviation of the parameters (the pL values can be
computed by taking the square root of the main diagonal elements of the covariance
matrix). Now, with reference to the high-force data set, if for example model ARX(24, 4) is
considered, nearly half of the parameters fail this statistical test, so that the model can be
considered highly redundant (statistically not signi"cant parameters are shaded in Table 4).

On the other hand, if the same test is performed on the NARX(4, 4, 1) model, all the
parameters are considered signi"cant (see Table 5).

Finally, it should be noted that the procedure for the selection of the appropriate terms in
the model is based on the predication error variance, and it is not infrequent that the
indenti"ed model turns out to be unstable if tested in simulation mode. While this was not
the case for the model classes investigated in sections 5.1}5.3, it is true for general
polynomial NARX models and also for the reference model (1) used here. Much trial and
error is required on the part of the user to obtain a model which is stable at least on the
same data set used for identi"cation. At present, this constitutes a major drawback in
NARX model identi"cation.
TABLE 4

Signi,cance of the parameters estimated for the ARX(24, 4) model on the high-force data set

Parameter Value 3pL Parameter Value 3pL

c
1,0

(1) 0)6774 0)0425 c
1,0

(15) !0)0388 0)07494
c
1,0

(2) !0)6739 0)0500 c
1,0

(16) 0)0275 0)0792
c
1,0

(3) 0)4988 0)0576 c
1,0

(17) !0)0680 0)0770
c
1,0

(4) !1)0061 0)0609 c
1,0

(18) 0)0963 0)0748
c
1,0

(5) 0)2980 0)0743 c
1,0

(19) !0)0813 0)0739
c
1,0

(6) !0)4710 0)0743 c
1,0

(20) 0)0019 0)0704
c
1,0

(7) 0)3122 0)0769 c
1,0

(21) !0)0005 0)0592
c
1,0

(8) !0)4469 0)0780 c
1,0

(22) !0)0647 0)0549
c
1,0

(9) !0)0349 0)0800 c
1,0

(23) 0)0949 0)0491
c
1,0

(10) 0)1061 0)0794 c
1,0

(24) !0)0478 0)0299
c
1,0

(11) 0)0835 0)0794 c
0,1

(1) 0)7784 0)3507
c
1,0

(12) 0)0332 0)0786 c
0,1

(2) !1)4544 0)9244
c
1,0

(13) !0)1865 0)0791 c
0,1

(3) 2)8631 1)0118
c
1,0

(14) 0)1259 0)0797 c
0,1

(4) !0)3810 0)4996



TABLE 5

Signi,cance of the parameters estimated for the NARX(4, 4, 1)
model on the high-force data set

Parameter Value 3pL

c
1,0

(1) 0)9074 0)0285
c
1,0

(2) !0)5279 0)0419
c
1,0

(3) 0)4576 0)0422
c
1,0

(4) !0)7067 0)0278
c
3,0

(1) !1)2745]10~4 0)6254]10~4
c
0,1

(1) 1)4789 0)4015
c
0,1

(2) !3)3362 1)0046
c
0,1

(3) 5)0140 1)0042
c
0,1

(4) !2)2512 0)4017
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6. SOME FURTHER ANALYSIS

A deeper understanding of the dynamic behaviour of the system can be obtained by
repeating the model identi"cation as the input excitation progresses. For reasons of
convenience this analysis has been limited to the high-force data set and only the following
parsimonious NARX model structure has been considered:

y(k)"c
1,0

(1)y (k!1)#c
1,0

(2)y(k!2)#c
1,0

(3)y (k!3)#c
1,0

(4)y(k!4)

#c
3,0

(1, 1, 1)y(k!1)3#c
0,1

(1)u (k!1), (2)

with only six parameters and a time window restricted to the last four time steps.
To account for the high non-stationarity of the signals, the data set has been divided in

partially overlapping 2 s blocks, which roughly discriminate the various phases of the
vibrational motion.

A harmonic analysis of these models based on the use of generalized frequency response
functions has been reported in reference [10]; this reveals, as expected, a &&softening spring''
behaviour of the structure. In fact, the resonance peak of the identi"ed model decreases
as the input amplitude increases. This can be interpreted as an e!ect of the structural
damage in the buttress and shows how the method can be used for the monitoring of
structures.

Analogous conclusions can be drawn by examining the model variation during the period
of maximum input excitation. In fact, if model (2) is re-estimated for the subsequent data
blocks in the 6}7, 7}8, 8}9 and 9}10 s time intervals, the poles of the linear part of the
model move as shown in Table 6 (see also Figure 9).

Notice that one of the couples of complex conjugated poles remains almost "xed on the
unit circle, whereas the other couple varies considerably in phase and much less in
the modulus. The former accounts for the peak at the fundamental frequency; in the 7}8 s
case (maximum signal intensity) this couple displays the minimum phase, which can be
otherwise interpreted as being associated with the lowest fundamental frequency.

Considering the magnitude of the poles, one would conclude that the linear part of
the model is unstable in the 7}8 s time window. In any case all the estimated models have
some poles very near the unit circle, due to the high oscillating nature of the signals
involved.



TABLE 6

Poles of the linear part of model (2) estimated at di+erent time intervals

6}7 s 7}8 s 8}9 s 9}10 s

0)8088$0)5719i 0)8342$0)5551i 0)8202$0)5596i 0)8181$0)5634i
!0)3529$0)7583i !0)4012$0)7312i !0)2631$0)8048i !0)1398$0)8433i

Figure 9. Location of the poles of the linear part of model (2) estimated at di!erent time intervals.

TABLE 7

Natural frequencies and damping factors of the dominant poles at di+erent time intervals

Time window (s) First pole Frequency Damping

6}7 0)8088#0)5719i 48)98 0)0154
7}8 0)8342#0)555i 46)72 !0)0034
8}9 0)8202#0)5596i 47)64 0)0119
9}10 0)8181#0)5634i 47)99 0)0111
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The corresponding natural frequencies ( f
j
) and damping factors (m

j
) can be computed as

in reference [20]:

m
j
"

ln(1/r
j
)

J/2
j
#ln2(1/r

j
)
, f

j
"

ln(1/r
j
)

2nm
j
¹

,

where r
j
and /

j
are the magnitude and phase of the jth couple of complex poles, respectively,

and ¹ is the sampling time. With reference to the dominant poles the values of natural
frequencies and damping factors reported in Table 7 are obtained.

The "rst order frequency response function (Figure 10) displays a single
signi"cant resonance peak corresponding to the frequency values reported in Table 7;



Figure 10. Frequency response function associated with the linear part of the models estimated at di!erent time
windows.

Figure 11. E!ect of the cubic non-linear term in the systems's response.
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it can be observed that the frequency of the peak decreases as the output signal
amplitude excursion gets higher (7}8 s), and that afterwards it gradually returns at higher
values.

The characteristic role of the cubic non-linearity included in the model is clearly seen in
the time domain, if the model is simulated with single-frequency inputs which excite the
higher order harmonics of the system's response. For example, the steady state response to
the input signal u (k)"30 cos(2n30k) looks like the one depicted in Figure 11; if compared
with the linearlized model response, a signi"cant contribution of the harmonic component
at 90 Hz is evident.

Suppose now the system is subjected to a bi-tonal input u (k)"10 cos(2n30k)#
10 cos(2n40k). In this case, several frequencies are excited in the response apart from f

1
and

f
2
, which are already present in the input; the third harmonics (3f

1
, 3f

2
) appear, as well as the

terms corresponding to sum (2f
1
#f

2
, f

1
#2f

2
) and di!erence frequencies (D f

1
!f

2
D, D2f

1
!f

2
D).

The magnitudes of the various frequency components of the output signal are reported in
Table 8.



TABLE 8

Intermodulation e+ect

Magnitude

Frequency Hz Non-linear model Linear model

D f
1
!f

2
D 10 7)4904 0

D2f
1
!f

2
D 20 112)101 0

f
1

30 36)0329 20)011
f
2

40 141)7237 46)15
3f

1
90 0)5721 0

2f
1
#f

2
100 3)5083 0

f
1
#2f

2
110 7)6865 0

3f
2

120 5)9903 0

Figure 12. Intermodulation e!ect (**, non-linear model; } } }}, linearized model).
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Note that with respect to the linearized model, not only are there signi"cant components
at new frequencies (di!erent from either 30 or 40 Hz), such as the peak at 20 Hz, but also the
components at the input frequencies are more intense. The corresponding time response (at
steady state) is shown in Figure 12, where the di!erence in the responses of the linearized
and the non-linear systems is marked.

7. CONCLUSIONS

A model identi"cation study has been carried out on experimental data gathered at
ISMES laboratories [17, 18]. The data concern a scale model of a dam buttress subjected to
seismic-like excitations on a shake table. The buttress has an arti"cial crack and, therefore,
displays a more or less non-linear behaviour, depending on the intensity of the input.

Both linear models and a suitable sub-class of the polynomial NARX/NARMAX family
have been employed in the analysis. Several questions related to the identi"cation
methodology have emerged during the modelling phase; in particular, the inadequacy of
classical empirical indices in the selection of the appropriate model structure is manifest.
Quite satisfactory non-linear models are obtained with much fewer parameters than



422 P. PALUMBO AND L. PIRODDI
suggested by these indices. Also there is no a priori technique to ensure that the identi"ed
model will be stable in simulation.

A second-level analysis has been performed by repeating the model identi"cation on
smaller portions of the data, to examine how the dynamic characteristics of the model can
vary in time as the seismic-like excitation evolves. In this light, the authors believe that
an e!ective structure-monitoring system should not only re-adapt the model parameters
when fresh data are available, but also periodically check the validity of the model structure.
Note that the last requirement prevents a straightforward implementation of classic
adaptive identi"cation algorithms.
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